

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Level In Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024 Question Paper Log Number P76184A Publications Code WST02_01_2406_MS All the material in this publication is copyright © Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
 - \circ the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only.
 - There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- cr d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

• Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.

For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question	Scheme Marks		
1(a)	The ra	andom variable M is such that $M \sim Po(2)$	
(i)	$[P(M_{,,} 3) =] 0.8571$ awrt <u>0.857</u> B1		
(ii)	P(M6) = 1 - P(M5)		
	$= 0.0166 \text{ (calc } 0.016563) \qquad \text{awrt } 0.0166 \text{ A1}$		
			(3)
(b)	$Q \sim Po(6)$ M1		
	P(4, Q, 7) = P(Q, 7) - P(Q, 3) [= 0.5928] M1		
	$X \sim B(20, "0.5928")$ and $P(X = 15)$ or ${}^{20}C_{15}("0.5928")^{15}(1 - "0.5928")^5$ M1		
	``````````````````````````````````````	A1	
(c)	Η ₀ : λ	$= 2 \qquad H_1: \ \lambda > 2$	B1
	$R \sim F$	$P_0(5) : P(R10) \text{ or } 1-P(R_{,,}9)$	M1
	= 0.0318 or CR: R 10		
	Reject $H_0$ or Significant or in the critical region		
	There is evidence to support the <b>manager's belief</b> /		
	rate of	f customers arriving at the garage has increased	A1
			(5)
(d)	The number of tyres bought is likely not to occur singly/tyres B1		
		t sold independently.	(1)
		Notes	Total 13
(a)	<b>B</b> 1	awrt 0.857	
	N/1	for $1 - P(M_{,,}, 5)$ or $1 - 0.9834$	
	MII	Do not allow $1 - P(M < 6)$ unless $1 - P(M_{1}, 5)$ is used	
	A1	awrt 0.0166 correct answer scores 2 out of 2	
(b)	M1	for writing or using Po(6)	
	M1	for $P(Q_{,,7}) - P(Q_{,,3})$ or 0.7440 – 0.1512 or awrt 0.593	
	M1	For B(20, "0.5928") and P(X = 15) or ${}^{20}C_{15}(p)^{15}(1-p)^5$ (implied by	awrt 0.068)
	A1	awrt 0.068	
(c)	R1	for correct hypotheses in terms of $\lambda$ or $\mu$ Allow 5 instead of 2.	
	DI	These must be attached to $H_0$ and $H_1$ correctly	
	M1	for writing or using $P_0(5)$ and $P(R10)$ or $1-P(R_2, 9)$	
	M1	(may be implied by awrt 0.0318 or correct CR)	
	A1	awrt 0.0318 allow CR: $[R]$ 10 allow any letter or no letter for CR	
	M1	for a correct ft statement consistent with their <i>p</i> -value and 0.05 or with 1	and their CR
	1711	Need not be contextual but there must be no contradicting non- contextual	al comments
	A1	dep on 1 st and 2 nd M1 for a correct conclusion in context which must be r Must use bold words (oe)	ejecting H ₀
(d)	B1	for the idea that tyres may be bought in e.g. pairs oe/the idea that tyre sal independent	es are not

Question		Scheme	Marks	
2(a)	$\frac{3}{10}d - \frac{1}{75}d^2 - \frac{2}{3} = 1$			
	$45d - 2d^2 - 100 = 150 \text{ or } \frac{3}{10}d - \frac{1}{75}d^2 - \frac{5}{3} = 0 \rightarrow 2d^2 - 45d + 250 = 0*$			
(b)	P(1<	M1		
	P(1·	M1		
	$P(H < 1.5   1 < H < 4.5) = \frac{"0.02604"}{"0.3958}$ M1			
		$=\frac{5}{76}$ or 0.06578 awrt <b>0.0658</b>	A1	
			(4)	
(c)	[f(h)]	$= \left  \begin{cases} \frac{h}{24} & 0 < h_{,,} & 4 \\ \frac{1}{6} & 4 < h_{,,} & 5 \end{cases} \right ^{2}$	M1 M1	
		$\begin{vmatrix} \frac{3}{10} - \frac{2}{75}h & 5 \le h, d \\ 0 & \text{otherwise} \end{vmatrix}$		
		Notes Total 9		
(a)	M1	for $\frac{3}{10}d - \frac{1}{75}d^2 - \frac{2}{3} = 1$		
	A1*	cso at least one step seen before given answer e.g. removing the denominat 3 term quadratic = $0$	or or correct	
(b)	M1	correct method to find P(1 < H < 4.5) implied by $\frac{19}{48}$ or awrt 0.396		
	M1	for writing or finding P(1 < H < 1.5) implied by $\frac{5}{192}$ or awrt 0.026		
	M1	for $\frac{p}{"0.3958"}$ where $0$		
	A1	awrt 0.0658		
(c)	M1	for one of row 1, 2 or 3 correct. Allow any letters. Condone missing/incorre	ect range	
	M1	for any two rows correct with ranges. Allow any letters and < for ,, signs		
	A1	Fully correct. all the same letter in rows 1 to 3 Allow $<$ for $\rightarrow$ signs condone $d = 10$ but not $d = 12.5$		

Question	Scheme Marks		
3(a)	A list of	all the shops	B1
			(1)
(b)	The shop	DS	B1
			(1)
(c)	Advanta	ge - A sample is quicker/ cheaper / easier to process	B1
	Disadvai	ntage – less accurate/ may be biased / may not be representative	B1
			(2)
(d)	$P(X,, o)$ or $X \dots 1$	6) = 0.0172 or $P(X 18) = 0.0212$ or $P(X , 17) = 0.9788$ or $X , 6$	M1
	$\left[ P(X, , ) \right]$	6)]=0.0172 <b><u>and</u></b> $[P(X18)]=0.0212$	A1
	CR: [0,,	]X,, 6, 18,, X[,, 30]	A1
			(3)
(e)	20 is in t	he critical region therefore there is evidence that <b>Jian's belief</b> is incorrect	B1ft
			(1)
(f)	$H_0: p =$	0.4 $H_1: p < 0.4$	B1
	$J \sim B(1$	$50, 0.4) \Longrightarrow \approx N(60, 36)$	M1A1
		(n+0.5)-60 ( $n+0.5$ )-60 ( $n+0.5$ )-60	M1
	P(J, 4	$P(Z_{m} = -2.08333]) = \frac{1.6449}{6}$	M1
		= 0.0188 (calc 0.018610) CR: J < awrt 49.6	A1
	There is	sufficient evidence to suggest that the <b>proportion</b> of <b>shops</b> where the	711
	stocktak	ing system is being used incorrectly is less than 0.4/decreased	A1
	5000110011		(7)
		Notes	Total 15
(a)	B1	for the idea of a list/database(oe) of all shops list of all stocktaking system	ns is B0
(b)	R1	for allow shop or store(s)	
	DI	the number of shops is B0 the stocktaking systems at each shop is B0	
(c)	B1	for a correct advantage for a sample oe eg allow census take longer than a sa e.g. 'a sample is more uncertain' on its own is B0	ample
	B1	for a correct disadvantage for a sample of eg a census is more accurate than	a sample
		If there is no reference to sample or census assume referring to sample.	I
		Ignore extraneous non-contradictory comments	
(d)	M1	for one of these probability statements correct <u>or</u> awrt 0.017 <u>or</u> awrt 0.021 <u>o</u> or one correct CR	<u>r</u> awrt 0.98
	A1	for both probabilities awrt 0.0172 and awrt 0.0212	
	A 1	for both CR correct on e.g. $X < 7$ , $X > 17$ ignore any symbol used between	the two
	AI	CR tails allow any or no letter (do not allow CR stated as probabil	ities)
(e)		for stating 20 is in the CR and give correct statement. Allow the belief in we	ords.
	Blft	Only ft if their CR is in the form $X_{,,} C_1 \cup X \dots C_2$ (allow as probability state	ements)
(f)	B1	for both hypotheses correct using n or $\pi$ . Must be attached to $H_{0}$ and $H_{1}$	
	M1	for writing or using $N(60)$	
	A1	for writing or using N(60, 36)	
		for standardising (allow $\pm$ ) using their "60" and "6" with either 46.5 47 or 4	7.5
	M1	for CR method $n, n + 0.5$ or $n - 0.5$ and equate to $-1.6449$ or better	
	M1	for using the correct continuity correction 47.5 or $(n + 0.5)$	
	A 1	for awrt 0.019 <u>or</u> CR: $J < awrt 49.6$ or $J + 0.5 < awrt 50.1$	
	AI	Exact binomial gives 0.01756and scores M0A0M0M0A0	
	A1	dep on previous A1 for a correct conclusion in context using bold word (oe) Do not allow 'number' for 'proportion'	

Question		Scheme	Marks	
4(a)	$\frac{10}{50}$ ×	$\frac{0}{50} \times \frac{9}{49} \left[ = \frac{9}{245} * \right] $ B1cso		
			(1)	
(b)	numl	number of counters numbered $4 = 10$ numbered $7 = 15$ numbered $10 = 25$ N		
	M =	4, 5.5, 7, 8.5, 10	B1	
	D(14	$(-5,5) = 2 \sqrt{10} \sqrt{15} [-6]$		
	1 (174	$(1-5.5) - 2 \times \frac{50}{50} \times \frac{49}{49} = \frac{49}{49}$	M1	
	D(14	(7) 2.10 25 15 14 71		
	P(M	$T = 7 = 2 \times \frac{1}{50} \times \frac{1}{49} + \frac{1}{50} \times \frac{1}{49} = \frac{1}{245}$	M1	
		(15) $(15)$ $(15)$		
	P(M	$T = 8.5 = 2 \times \frac{50}{50} \times \frac{49}{49} = \frac{49}{49}$	MI	
	Р( <i>М</i>	$(I = 10) = \frac{25}{50} \times \frac{24}{49} \left[ = \frac{12}{49} \right]$		
	m	4 5.5 7 8.5 10		
	D(	(M - m) = 9 = 6 = 71 = 15 = 12		
	1	$(M - M)$ $\frac{1}{245}$ $\frac{1}{49}$ $\frac{1}{245}$ $\frac{1}{49}$ $\frac{1}{49}$	A1	
		$\left( \begin{array}{c} awrt \end{array} \right) \left( \begin{array}{c} awrt \end{array} \right)$		
		(0.037) $(0.122)$ $(0.290)$ $(0.306)$ $(0.243)$		
			(0)	
(c)	$\left(1-\frac{1}{2}\right)$	$\left(1-\frac{9}{245}\right)^n < 0.15$ M1		
	<i>n</i> = 5	$n = 50.689$ or $n = 50$ is $0.1539$ or $n = 51$ is $0.148$ or $[n > ] \frac{\log 0.15}{\log(1 - \frac{9}{245})}$ M1		
	n = 5	n = 51		
			(3)	
		Notes	Total 10	
(a)	B1	A correct equivalent expression		
(b)		For 10, 15 and 25 - may be seen in (a) or may be seen in probability expression	ons	
	M1	an means correct with no incorrect extra unless they have a probability of 0 One correct probability (not including $9/245$ )		
	M1	Two correct probabilities (not including 9/245)		
	M1	Three correct probabilities (not including 9/245)		
		fully correct. need not be in a table but must have correct probability associat	ed with	
	AI	correct mean		
	SC	With replacement using probabilities $\frac{10}{50}, \frac{15}{50}, \frac{25}{50}$ gives $\frac{3}{25}, \frac{29}{100}, \frac{3}{10}, \frac{1}{4}$		
		can score maximum M1B1M1(two correct)M1(four correct)M0A0		
(c)	M1	Setting up a correct inequality (allow any inequality or equal sign here)		
	M1	for a value $n = awrt 50.7 \text{ or}$ awrt 0.154 or awrt 0.148		
		or correct log expression for <i>n</i>		
	A1	51 cao do not allow $n \dots 51$		

Question	Scheme		Marks	
5(a)	$D \sim B(8, 0.05)$			
	P(D = 2) = 1 $P(D = 1)$		M1	
	1(D).	= 0.0572  (calc  0.057244  ) awrt 0.0572	A1	
		() () () () () () () () () () () () () (	(3)	
(b)	$E \sim Po(50)$			
	$P(E=45) = \frac{e^{-50} \times 50^{45}}{451}$			
		= 0.0458262 awrt <u>0.0458</u>	A1	
			(3)	
(c)	$P(T > 16) = \frac{50 - 16}{50 - 10} \text{ or } 1 - \frac{16 - 10}{50 - 10}$		M1	
		= 0.85	Al	
			(2)	
(d)	P(T < 40) = 0.75		M1	
	F = nu	The imber of customers ringing in the next 40 seconds has $F \sim Po(4)$		
	P( <i>F</i> =	$= 0)[=e^{-4} = awrt 0.0183]$	M1	
	P(Jia reaches the correct department and $F = 0$ ) = $0.75 \times 0.95 \times e^{-4}$			
	= 0.013049 awrt <u>0.013</u> A1			
		(4)		
		Notes	Total 12	
(a)	M1	for writing or using $B(8, 0.05)$		
	M1 for writing or using $1 - P(D_{,,} 1)$			
	A1	awrt 0.0572		
(b)	M1 for writing or using Po(50)			
	M1 for $\frac{e^{-\lambda} \times \lambda^{45}}{45!}$ with any value of $\lambda$ (may be implied by awrt 0.046)			
	A1	awrt 0.0458		
(c)	M1	for a correct method to find $P(T > 16)$		
	A1	for 0.85 oe correct answer scores 2 out of 2		
(d)	M1	for 0.75 oe		
	M1	for attempting $P(F = 0)$ from Po ( $\lambda$ ) allow any $\lambda$		
	dM1 dep on previous M1" $0.75$ "× $0.95$ ×"e ⁻⁴ "			
	A1	awrt 0.013		

Question	Scheme	Marks
6(a)	$\int_{-1}^{3} (a+bx) dx [=1] \qquad \underline{\text{or}} \qquad \text{trapezium drawn}$	M1
	$\left[ax + \frac{bx^2}{2}\right]_{-1}^{3} [=1]$ oe <u>or</u> $\frac{3-(-1)}{2}((a-b)+(a+3b))[=1]$	A1
	$\left[3a + \frac{9b}{2}\right] - \left[-a + \frac{b}{2}\right] = 1  \text{oe}  \underline{\text{or}}  \frac{4}{2}(2a + 2b) = 1  \Longrightarrow 4a + 4b = 1*$	A1*
		(3)
(b)(1)	$\int_{-1}^{3} ax^{2} + bx^{3} dx = \left[\frac{ax^{3}}{3} + \frac{bx^{4}}{4}\right]_{-1}^{3}$	M1A1
	$\left[\frac{27a}{3} + \frac{81b}{4}\right] - \left[-\frac{a}{3} + \frac{b}{4}\right] = \frac{17}{5}$	dM1
	$\frac{28}{3}a + 20\left(\frac{1-4a}{4}\right) = \frac{17}{5}$	M1 A1
		(5)
(ii)	$-\frac{32}{3}a = -\frac{8}{5} \text{ oe} \qquad \frac{28}{3}\left(\frac{1-4b}{4}\right) + 20b = \frac{17}{5}$	M1
	$b = \frac{1 - 4 \times 0.15}{4} \Longrightarrow b = 0.1^*$	A1*
		(2)
(c)	0.45	M1 A1
		(2)
(d)	$\begin{bmatrix} "0.15"k + \frac{0.1k^2}{2} \end{bmatrix} - \begin{bmatrix} -"0.15" + \frac{0.1}{2} \end{bmatrix} = 0.2  \begin{bmatrix} 0.45 + \frac{0.9}{2} \end{bmatrix} - \begin{bmatrix} "0.15"k + \frac{0.1k^2}{2} \end{bmatrix} = 0.8$ $\frac{\text{or}}{\frac{1}{2}(k+1)(0.05+0.1k+0.15) = 0.2  \frac{1}{2}(3-k)(0.15+0.1k+0.45) = 0.8$	M1
	$0.05k^2 + 0.15k - 0.1 = 0$	Al
	$k = \frac{-0.15 \pm \sqrt{0.15^2 - 4 \times 0.05 \times (-0.1)}}{2 \times 0.05}$	M1
	= 0.56155 awrt <u>0.562</u>	Al
		(4)
		Total 16

	Notes		
(a)	M1	for an attempt to integrate $a + bx$ with either $a \rightarrow ax$ or $x \rightarrow x^2$ ignore limits or for trapezium drawn with parallel sides correct in terms of a and b (may be implied by correct area of trapezium)	
	A 1	correct integration or correct area of transzium	
	AI	Ar concerning anon <u>or</u> concerned area or napezium	
	A1*	answer	
		Mark b(i) and b(ii) together	
(b)(i)	M1	for an attempt to integrate $ax^2 + bx^3$ with either $x^2 \rightarrow x^3$ or $x^3 \rightarrow x^4$ ignore limits	
	A1	correct integration ignore limits	
	dM1	dep on previous M1. Substituting in correct limits and equating to 17/5	
	M1	substituting $4b = 1 - 4a$ oe	
	A1	a correct equation	
(ii)	M1	solving their equation in <i>a</i> in the form $na = c$ where $n \neq 1$ or a correct equation in terms of <i>b</i> M0 for $a = 0.15$ without working or for using $b = 0.1$ in $4a + 4b = 1$ to find <i>a</i>	
	A1*	for a correct un-simplified expression for <i>b</i> leading to given answer $b = 0.1$ * which must come from correct working	
(c)	M1	correct shape (straight line with positive gradient) must be above <i>x</i> -axis and must be between -1 and 3 ignore graph before -1 and after 3	
	A1 correct with both correct x-axis labels $-1$ and 3 and at least 1 correct y –axis label from 0.05, 0.15 or 0.45 ignore graph before $-1$ and after 3		
(d)	M1	M1 for a correct equation using integration or area need not be simplified. use of limit $k + 1$ instead of k in integration is M0	
	A1	correct 3 term quadratic (oe)	
	M1	correct method seen to solve their 3 term quadratic or awrt 0.562 or awrt – 3.56	
	A1	awrt 0.562 with other solutions eliminated if given Allow $\frac{\sqrt{17}-3}{2}$	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom