

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Level In Pure Mathematics (WMA11) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024 Question Paper Log Number P75707A Publications Code WMA11_01_2406_MS All the material in this publication is copyright © Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)

Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN:

- bod benefit of doubt
- ft follow through
 - \circ the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:
 - a) If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - b) If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Pure Mathematics Marking

(NB specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c| leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a| leading to x = ...

2. Formula

Attempt to use correct formula (with values for a, b and c)

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$ leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1 ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1 ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small mistakes in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question	Scheme	Marks
1	$\int \left(10x^4 - \frac{3}{2x^3} - 7\right) dx = 2x^5 + \frac{3}{4}x^{-2} - 7x + c$	M1A1A1
-		(3)
		Total 3
Notes:		
M1: For in	increasing one of the powers of x by 1 e.g. $x^4 \rightarrowx^5$ or $x^{-3} \rightarrowx^{-2}$ or $7 \rightarrow7x$	
A1: Any t	wo correctly integrated terms, unsimplified or simplified.	
Allow	v e.g. $\frac{10}{4+1}x^{4+1}$, $-\frac{3}{-4}x^{-3+1}$, $-7x^{1}$	
A1: $2x^5 + \frac{1}{2}$	$\frac{3}{4}x^{-2} - 7x + c$ all correct and simplified in one expression and including "+ c".	
Allow	correct simplified equivalents for $\frac{3}{4}x^{-2}$ e.g. $0.75x^{-2}$, $\frac{3}{4x^2}$ but do not allow $-7x^1$ for -7	x or $\frac{2}{1}$ for 2
Award	this mark once a correct simplified expression is seen and apply isw if necessary.	
Condor	ne poor notation e.g. spurious integral signs, "dx", $\frac{dy}{dx} = \dots$ and look for the correct expre	ession.

Question	Scheme	Marks
2(i)(a)	$2^{n+3} = 2^n \times 2^3 = 8m$	B1
		(1)
(b)	$16^{3n} = (2^4)^{3n}$	M1
	$=2^{12n}=\left(2^n\right)^{12}=m^{12}$	A1
		(2)
Notes:		
(i)(a)		
B1: For 8 <i>m</i>	(Condone 8M). Do not allow 2^3m .	
(b)		
M1: For wr	iting 16^{3n} correctly as an expression involving a power of 2.	
Examp	bles: $(2^4)^{3n}$, $(2^2)^{6n}$, $(2^{3n})^4$, $(2^n)^{12}$, $(2^{12})^n$, 2^{12n}	
A1: For m^{12}	2 (Condone M^{12})	
	answer only scores both marks.	

(ii)
$$\frac{x\sqrt{3}-3=x+\sqrt{3}\Rightarrow x\sqrt{3}-x=3+\sqrt{3}\Rightarrow x(\sqrt{3}-1)=3+\sqrt{3}\Rightarrow x=\dots}{M1}$$

$$=\frac{3+\sqrt{3}}{\sqrt{3}-1}\times\frac{\pm(\sqrt{3}+1)}{\pm(\sqrt{3}+1)}$$
MI
$$=\frac{\pm(4\sqrt{3}+6)}{\pm(3-1)}=3+2\sqrt{3}$$
A1
(3)
Notes:
In this part, the A1 depends on both M marks
(ii)
M1: Collects x terms to one side, factorises and makes x the subject
It is for processing the given equation and reaching $x=\frac{\alpha+\beta\sqrt{3}}{\gamma+\delta\sqrt{3}}, \alpha, \beta, \gamma, \delta \neq 0$
M1: Correct attempt to rationalise their denominator.
Not formally dependent but requires $\frac{\cdots}{\gamma+\delta\sqrt{3}}=\frac{\sqrt{-\delta\sqrt{3}}}{\gamma+\delta\sqrt{3}}, x(-\beta,\gamma,\delta) \neq 0$
M1: Correct attempt to rationalise their denominator.
Not formally dependent but requires $\frac{\cdots}{\gamma+\delta\sqrt{3}}=\frac{\sqrt{-\delta\sqrt{3}}}{\gamma-\delta\sqrt{3}}$ or equivalent.
Sight of e.g. $\frac{3+\sqrt{3}}{\sqrt{3}-1}=\frac{\sqrt{3}+\sqrt{3}}{\sqrt{3}+1}$ is sufficient for this mark but may be implied by e.g.
 $\frac{3+\sqrt{3}}{\sqrt{3}-1}=\frac{3\sqrt{3}+3+3+\sqrt{3}}{3-1}$
A1: For $3+2\sqrt{3}$ with at least one intermediate step e.g.
 $\frac{3+\sqrt{3}}{\sqrt{3}-1}=\frac{3\sqrt{3}+3+3+\sqrt{3}}{3-1}$ or $\frac{3+\sqrt{3}}{\sqrt{3}-1}=\frac{4\sqrt{3}+\sqrt{3}}{\sqrt{3}-1}=\frac{3+\sqrt{3}}{\sqrt{3}-1}=\frac{3\sqrt{3}}{\sqrt{3}-1}=\frac{3+\sqrt{3}}{\sqrt{3}-1}=3+\sqrt{3}\Rightarrow x(\sqrt{3}-1)=3+\sqrt{3}\Rightarrow x=\frac{3+\sqrt{3}}{\sqrt{3}-1}$
A1l: 0
Example of insufficient work:
 $x\sqrt{3}-3=x+\sqrt{3}\Rightarrow x\sqrt{3}-x=3+\sqrt{3}\Rightarrow x(\sqrt{3}-1)=3+\sqrt{3}\Rightarrow x=\frac{3+\sqrt{3}}{\sqrt{3}-1}=3+2\sqrt{3}$
Scores MIM0A0

Scores M1M0A0

Alternatives for part (ii)

(ii) ALT 1	$x\sqrt{3} - 3 = x + \sqrt{3} \Longrightarrow \left(p + q\sqrt{3}\right)\sqrt{3} - 3 = p + q\sqrt{3} + \sqrt{3} \Longrightarrow p\sqrt{3} + 3q - 3 = p + \sqrt{3} + q\sqrt{3}$ $\implies p = q + 1, \ 3q - 3 = p$	M1
	$\Rightarrow p = q + 1, \ 3q - 3 = p \Rightarrow p =, q =$	M1
	$x = 3 + 2\sqrt{3}$	Al

Notes:

M1: Substitutes $x = p + q\sqrt{3}$, collects terms, compares coefficients and forms 2 equations in p and q It is for obtaining 2 equations of the form $\alpha p + \beta q = \gamma$, $\alpha, \beta, \gamma \neq 0$

M1: Solves simultaneously with evidence of algebra i.e. answers not just written down from a calculator. Not formally dependent but requires the solution of 2 equations of the form $\alpha p + \beta q = \gamma$, $\alpha, \beta, \gamma \neq 0$

A1: For $3 + 2\sqrt{3}$. Allow $2\sqrt{3} + 3$.	It is for this expression and not for just $p = 3$, $q = 2$ unless $3 + 2\sqrt{3}$ is seen.

(ii) ALT 2	$x\sqrt{3} - 3 = x + \sqrt{3} \Longrightarrow 3x^2 - 6\sqrt{3}x + 9 = x^2 + 2\sqrt{3}x + 3$ $\Longrightarrow 2x^2 - 8\sqrt{3}x + 6 = 0$	M1
	$x^{2} - 4\sqrt{3}x + 3 = 0 \Longrightarrow x = \frac{4\sqrt{3} \pm \sqrt{(4\sqrt{3})^{2} - 4 \times 1 \times 3}}{2}$	M1
	$\Rightarrow x = \frac{4\sqrt{3} \pm \sqrt{36}}{2} \Rightarrow x = 2\sqrt{3} \pm 3$ $x = 2\sqrt{3} + 3$	A1

Notes:

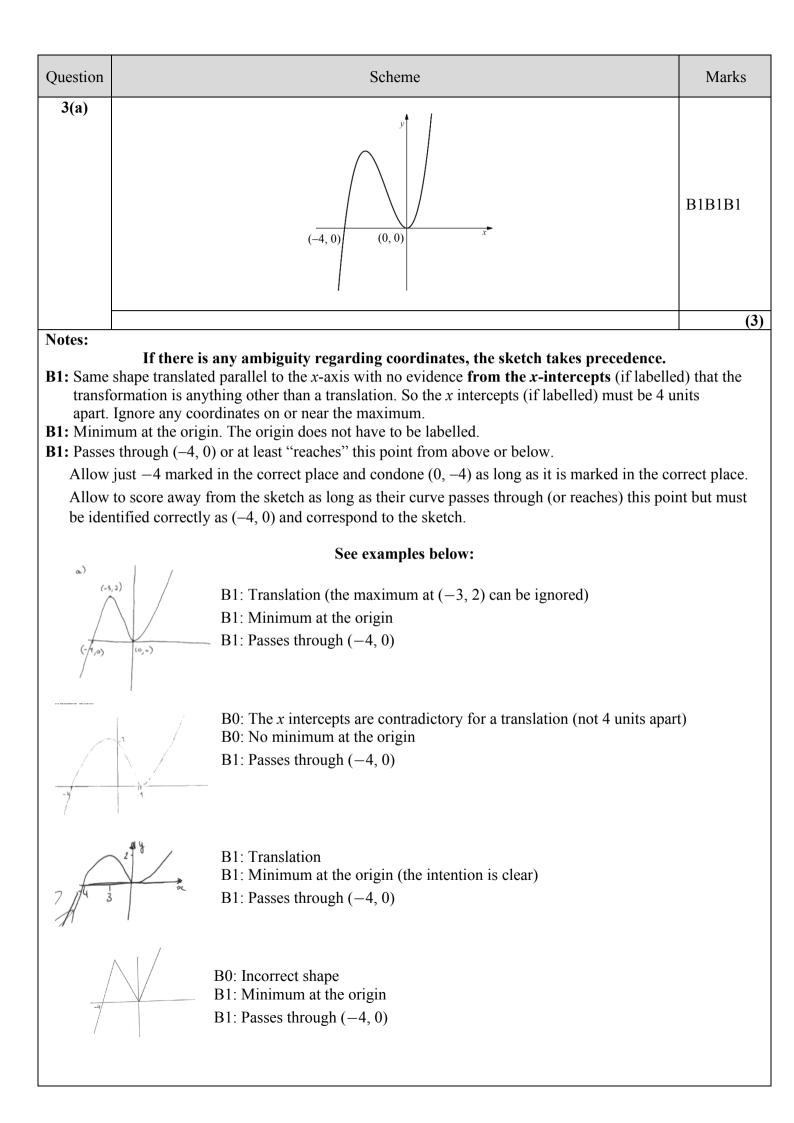
M1: Squares both sides. Must obtain a 3 term quadratic expression on both sides and collect terms to one side. M1: Solves a 3TQ of the form $px^2 + q\sqrt{3}x + r = 0$ by a correct non-calculator method.

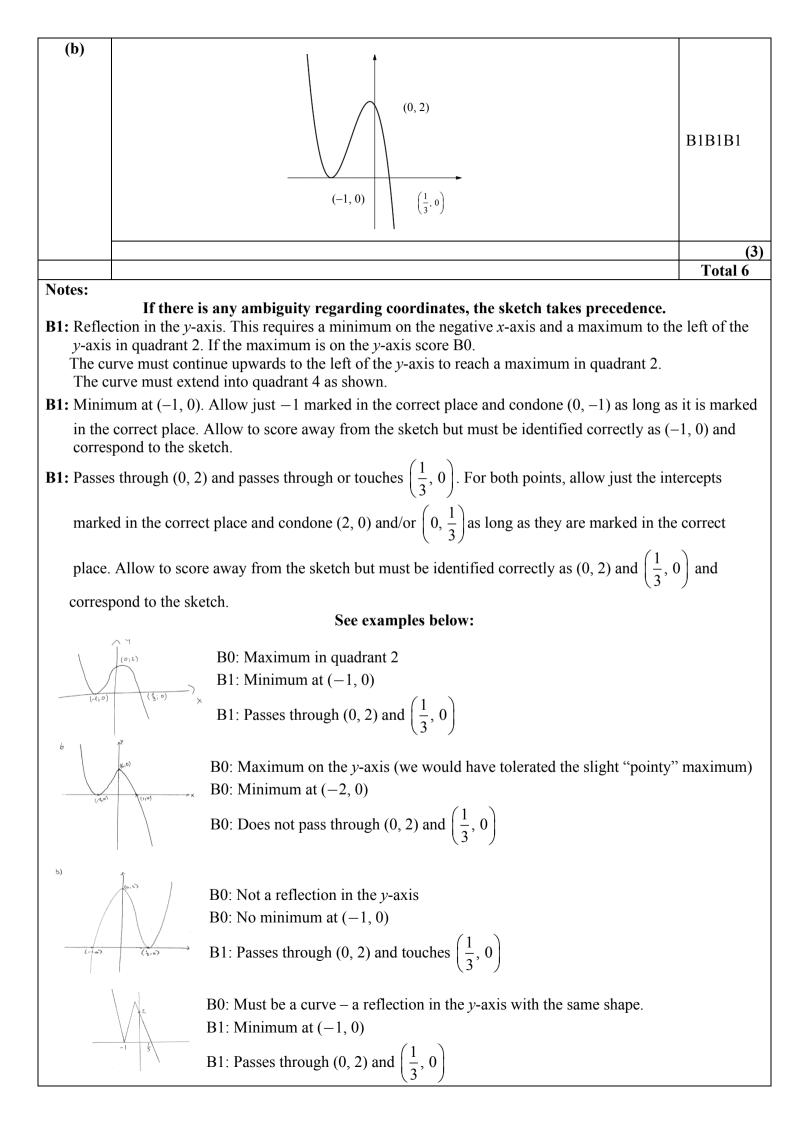
A1: For $3+2\sqrt{3}$. Allow $2\sqrt{3}+3$. It is for this expression and not for just p = 3, q = 2 unless $3+2\sqrt{3}$ is seen. If any other answers are offered and clearly not rejected score A0.

(ii) ALT 3	$x\sqrt{3}-3 = x+\sqrt{3} \Rightarrow (x\sqrt{3}-3)(x-\sqrt{3}) = (x+\sqrt{3})(x-\sqrt{3})$ $\Rightarrow \sqrt{3}x^2 - 6x + 3\sqrt{3} = x^2 - 3 \Rightarrow (\sqrt{3}-1)x^2 - 6x + 3\sqrt{3} + 3 = 0$	M1
	$\left(\sqrt{3}-1\right)x^{2}-6x+3\sqrt{3}+3=0 \Rightarrow x=\frac{6\pm\sqrt{36-4\left(\sqrt{3}-1\right)\left(3\sqrt{3}+3\right)}}{2\left(\sqrt{3}-1\right)}$	M1
	$=\frac{6\pm\sqrt{36-24}}{2(\sqrt{3}-1)}=\frac{6\pm\sqrt{12}}{2(\sqrt{3}-1)}=\frac{3\pm\sqrt{3}}{\sqrt{3}-1}=\frac{3\pm\sqrt{3}}{\sqrt{3}-1}\times\frac{\sqrt{3}+1}{\sqrt{3}+1}$	
	$=\frac{3\sqrt{3}+3\pm3\pm\sqrt{3}}{2}=2\sqrt{3}+3, \ \sqrt{3}$ $x=2\sqrt{3}+3$	A1

Notes:

M1: Multiples both sides by e.g. $(x - \sqrt{3})$ and collects terms to one side.


Must obtain a 3 term quadratic expression on lhs and a 2 or 3 term quadratic expression on rhs.


M1: Solves a 3TQ of the form $(A + B\sqrt{3})x^2 + Cx + D + E\sqrt{3} = 0$, $A, B, C, D, E \neq 0$ by a correct non-calculator

method **and** then attempts to rationalise the denominator as in the main scheme.

A1: For $3+2\sqrt{3}$. Allow $2\sqrt{3}+3$. It is for this expression and not for just p = 3, q = 2 unless $3+2\sqrt{3}$ is seen. If any other answers are offered and clearly not rejected score A0.

Total 6

	Scheme	Marks
$x^2 + kx - 9 =$	$= -3x^{2} - 5x + k \Longrightarrow 4x^{2} + kx + 5x - 9 - k(=0)$	M1
$b^2 - 4$	$4ac = 0 \Longrightarrow (k+5)^2 - 4 \times 4(-9-k) = 0$	M1
	$k^2 + 26k + 169 = 0*$	A1*
		(3)
	$k^2 + 26k + 169 = 0 \Longrightarrow k = -13$	B1
<i>k</i> =	$= -13 \Longrightarrow 4x^2 - 8x + 4 = 0 \Longrightarrow x = \dots$	M1
	(1, -21)	A1
		(3)
		Total 6
	Mark (a) and (b) together	
formula/express red answer with	In $pk+q$, $p,q \neq 0$ and requires <i>a</i> as a constant. Sion is used e.g. " $b^2 + 4ac$ " this scores M0 no errors and sufficient working shown. Ince before the printed answer unless they start with	th $b^2 = 4ac$.
Condone $r = -1$	13 if it is subsequently used as a value for k.	
condone x = -1		
es a 3TQ for x b k into the 2 given thethod including	-	
Co	arrect answer only in (b) scores 3/3	
	low as e.g.	bd including a calculator low as e.g. $x = 1$, $y = -21$ Correct answer only in (b) scores 3/3

Question	Scheme	Marks
5(a)	$\frac{1}{2} \times 6^2 \times 1.3 = \dots$	M1
-	$\frac{2}{=23.4 (\text{m}^2)}$	A1
		(2)
(b)	$12.2^2 = 6^2 + 10.8^2 - 2 \times 6 \times 10.8 \cos(ABE)$	M1
	$\cos(ABE) = \frac{6^2 + 10.8^2 - 12.2^2}{2 \times 6 \times 10.8} \left(= \frac{19}{648} \right)$	
	$2 \times 6 \times 10.8$ (648) ABE = 1.54	A1
_	ADE = 1.34	(2)
(c)	Area $ABE = \frac{1}{2} \times 10.8 \times 6 \sin(ABE)$	M1
	Area $BCD = \frac{1}{2} \times 6\cos(\pi - 1.3 - "1.54") \times 6\sin(\pi - 1.3 - "1.54")$	
	2 or e.g.	M1
	Area $BCD = \frac{1}{2} \times 6\sin(\pi - 1.3 - "1.54") \times \sqrt{6^2 - (6\sin(\pi - 1.3 - "1.54"))^2}$ Total area = 60.9m ²	
	Total area = 60.9m^2	Al
		(3)
Notes:		Total 7
Condor (b)	t value. Allow equivalent values e.g. $\frac{117}{5}$, $23\frac{2}{5}$. The lack of units but if any are given they should be correct. Correct answer only score	es both marks.
A1: For aw		
(c)	Allow equivalent work in degrees.	
M1: Correc	t method for area <i>ABE</i> e.g. $\frac{1}{2} \times 10.8 \times 6 \sin(\text{their } ABE)$	
	t method for area <i>BCD</i> be a correct method including the $\frac{1}{2}$	
Note th	hat CD may be found using the sine rule e.g. $\frac{6}{\sin \frac{\pi}{2}} = \frac{CD}{\sin(\pi - 1.3 - 1.54'')} \Longrightarrow CD =$	
Note th	the a correct method including the ½ that <i>CD</i> may be found using the sine rule e.g. $\frac{6}{\sin\frac{\pi}{2}} = \frac{CD}{\sin(\pi - 1.3 - 1.54'')} \Rightarrow CD =$ that <i>BC</i> may be found using the sine rule e.g. $\frac{6}{\sin\frac{\pi}{2}} = \frac{BC}{\sin\left(1.3 + 1.54'' - \frac{\pi}{2}\right)} \Rightarrow BC =$	
Having In such Do no t	found <i>CD</i> or <i>BC</i> as above, <i>BC</i> or <i>CD</i> may be found using Pythagoras. In cases the trigonometry must be correct for their values. It allow mixing of degrees and radians e.g. $180-1.3-"1.54"$ for $\pi-1.3-"1.54"$ total area. Allow awrt 60.9 (Condone lack of units)	
	Some values for reference:Angle $DBC = 0.300(17.1°)$, Angle $BDC = 1.27(72.7°)$,Area $ABE = 32.38$, Area $BCD = 5.083$, $CD = 1.77$, $BC = 5.73$	

6(a)	Scheme	Marks
	$y - 5x = 75, y = 2x^2 + x - 21$	
	$\Rightarrow 2x^2 + x - 21 = 5x + 75$	
	$\Rightarrow 2x^2 - 4x - 96 = 0$ or e.g. $x^2 - 2x - 48 = 0$	
	Or 2	M1
	$\Rightarrow y = 2\left(\frac{y-75}{5}\right)^2 + \frac{y-75}{5} - 21$	
	$\Rightarrow 2y^2 - 320y + 10350 = 0 \text{ or e.g. } y^2 - 160y + 5175 = 0$ $x^2 - 2x - 48 = 0 \Rightarrow (x - 8)(x + 6) = 0 \Rightarrow x = -6, 8$	
	$x^{2}-2x-48=0 \Longrightarrow (x-8)(x+6)=0 \implies x=-6, 8$	dM1
	$x = -6 \Rightarrow y = 45 \text{ or } x = 8 \Rightarrow y = 115$	dM1
	P(-6, 45) and $Q(8, 115)$	A1
		(4)
(b)	e.g. $y \leq 2x^2 + x - 21$, $y - 5x \leq 75$, $y \geq 0$, $x \leq -3.5$	
	$x \leq a$ where $-3.5 \leq a < 3$	M1A1A1
	(or $a \leq x \leq b$ where $a \leq -15, -3.5 \leq b \leq 3$)	
		(3)
Notes:		Total 7
dM1: Solves	fively eliminates x to obtain a 3TQ in y their 3TQ to obtain at least one value for x or y by an acceptable method e.g. fa	
dM1: Solves formul interm We wil But e.g	their 3TQ to obtain at least one value for x or y by an acceptable method e.g. fa a or completing the square. They cannot just state the roots without seeing a correction ediate working. 1 condone e.g. $2x^2 - 4x - 96 = 0 \Rightarrow x = \frac{4 \pm \sqrt{(-4)^2 - 4(2)(-96)}}{2 \times 2} = -6, 8$. $2x^2 - 4x - 96 = 0 \Rightarrow x = \frac{4 \pm \sqrt{-4^2 - 4(2)(-96)}}{2 \times 2} = -6, 8$ scores M0 as it suggest	rect line of s an incorrect
dM1: Solves formul interm We wil But e.g	their 3TQ to obtain at least one value for x or y by an acceptable method e.g. fa a or completing the square. They cannot just state the roots without seeing a correction ediate working. 1 condone e.g. $2x^2 - 4x - 96 = 0 \Rightarrow x = \frac{4 \pm \sqrt{(-4)^2 - 4(2)(-96)}}{2 \times 2} = -6, 8$. $2x^2 - 4x - 96 = 0 \Rightarrow x = \frac{4 \pm \sqrt{-4^2 - 4(2)(-96)}}{2 \times 2} = -6, 8$ scores M0 as it suggest a but allow recovery e.g. $2x^2 - 4x - 96 = 0 \Rightarrow x = \frac{4 \pm \sqrt{-4^2 - 4(2)(-96)}}{2 \times 2} = 4 \pm$	rect line of s an incorrect
dM1: Solves formul interm We wil But e.g formula condor If they Depen dM1: Uses a Depen May b A1: All corra paired va Condor	their 3TQ to obtain at least one value for x or y by an acceptable method e.g. fa a or completing the square. They cannot just state the roots without seeing a correction ediate working. 1 condone e.g. $2x^2 - 4x - 96 = 0 \Rightarrow x = \frac{4 \pm \sqrt{(-4)^2 - 4(2)(-96)}}{2 \times 2} = -6, 8$. $2x^2 - 4x - 96 = 0 \Rightarrow x = \frac{4 \pm \sqrt{-4^2 - 4(2)(-96)}}{2 \times 2} = -6, 8$ scores M0 as it suggest	rect line of as an incorrect $\overline{784} = -6, 8$ and given equations. r y. bk for the correct

Candidates who show <u>no</u> working for solving their 3TQ can score a maximum 1010 Correct answers with no working scores no marks.

(b) Allow strict or non-strict inequalities and allow a mixture for the first 2 marks.

M1: Obtains at least 2 of the required inequalities e.g. 2 of:

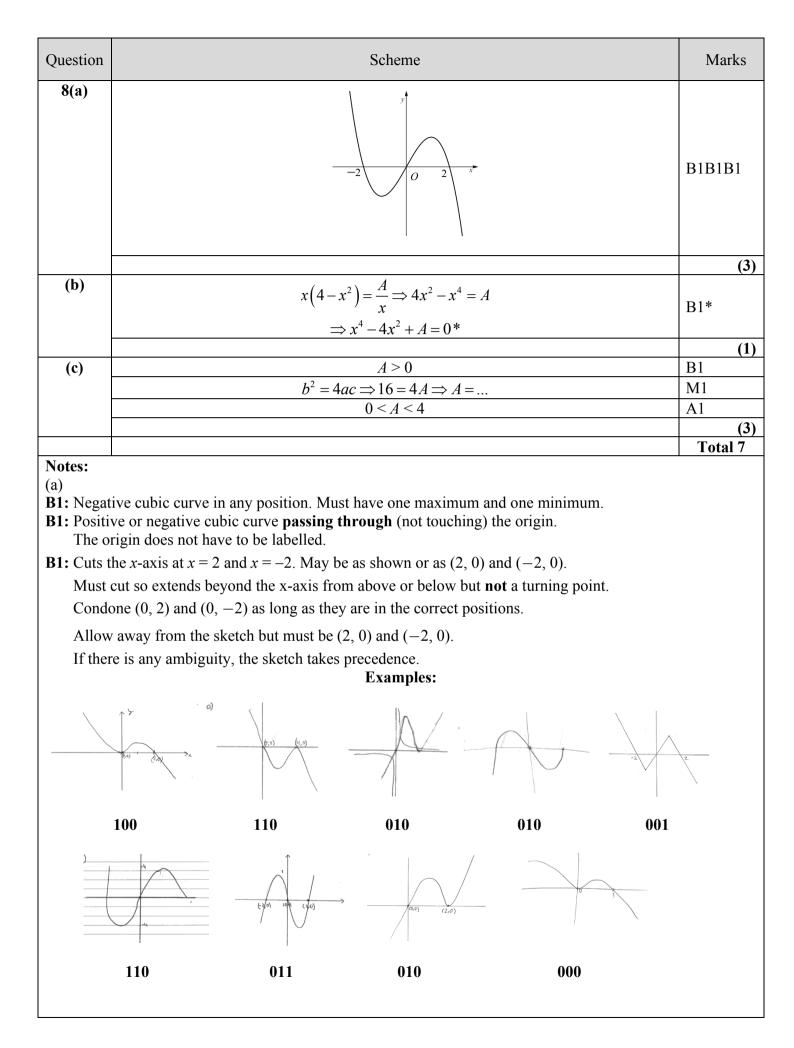
$$y \leq 2x^2 + x - 21$$
, $y - 5x \leq 75$, $y \geq 0$, $x \leq a$ where $-3.5 \leq a < 3$

Allow equivalents e.g. y < 5x + 75

Allow e.g. $0 \le y \le 2x^2 + x - 21$ or e.g. 0 < y < 5x + 75 each of which would count as 2 correct inequalities.

Do not allow e.g. $R \leq 2x^2 + x - 21$

A1: Any 3 of the 4 required inequalities.


A1: All correct and consistent. For consistency, the inequalities for y must be either all strict or all non-strict. The restriction on x will depend on their chosen x value. For example

 $y \ge 0$, $y \le 5x+75$, $y \le 2x^2 + x - 21$, x < 0 scores full marks $y \ge 0$, $y \le 5x+75$, $y \le 2x^2 + x - 21$, x < -3.5 scores M1A1A0

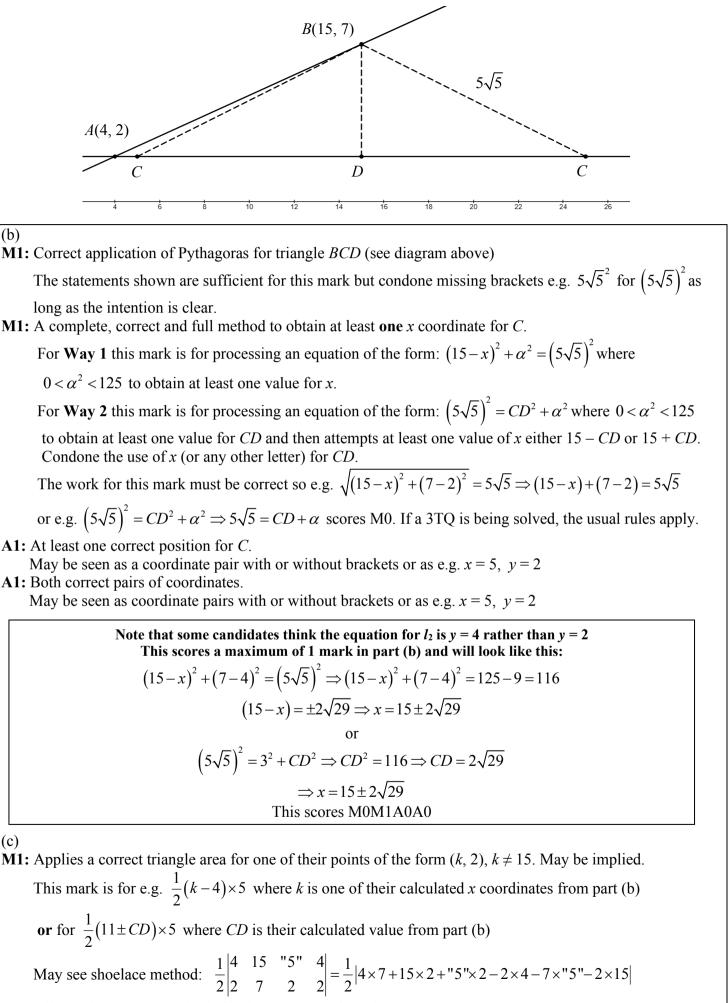
If there are extra incorrect inequalities then score A0

Question	Scheme	Marks
7(a)(i)	$f(x) = 2x^3 - kx^2 + 14x + 24 \Longrightarrow (f'(x)) = 6x^2 - 2kx + 14$	M1A1
	$(\mathbf{f}''(\mathbf{x}) =)12\mathbf{x} - 2\mathbf{k}$	A1ft
(ii)		(3)
(b)	$6x^{2} - 2kx + 14 = 12x - 2k \Longrightarrow 6(5)^{2} - 2k(5) + 14 = 12(5) - 2k \Longrightarrow k = \dots$	M1
	k = 13	A1
		(2)
(c)	$k = 13 \Longrightarrow 6x^2 - 38x + 40 = 0 \Longrightarrow x = \dots$	M1
	$x = "\frac{4}{3}" \Rightarrow y = 12 \left("\frac{4}{3}"\right) - 2 \times 13 \text{ or } y = 6 \left("\frac{4}{3}"\right)^2 - 2 \times 13 \times \left("\frac{4}{3}"\right) + 14$	M1
	$x = \frac{4}{3}, y = -10$	Al
		(3)
Notes:		Total 8
Isw can (ii) A1ft: Corre The " Isw c (b) M1: Sets f'(allow x^1 for x . a be applied once a correct simplied derivative is seen. ct simplified second derivative. Follow through their first derivative f''(x) = " is not required. can be applied once a correct simplied second derivative is seen. Must follow M1 f(x) = f''(x), substitutes $x = 5$ and solves a linear equation in k to find a value for k . abstitute $x = 5$ into f'(x) and f''(x) first, then equate and solve for k .	
for x by M1: Substit May be A1: Correct	States their k into the equated $f'(x) = f''(x)$ and solves the resulting 3TQ to obtain at least any means including a calculator. States their x (not 5) and their k into $f'(x)$ or $f''(x)$ to find a value for y. The implied by their values so you may need to check. The coordinates. May be seen as $x =, y =$ or as a coordinate pair but condone mission.	
e.g. $\frac{1}{3}$	-10. Award this mark as soon as the correct values are seen.	
	Allow a "made un" k in (c)	

Allow a "made up" k in (c).

(b) B1*: Equates the curves and shows sufficient working to obtain the printed answer with no errors. Note that x(4-x²) may be expanded first before equating which is fine. There must be at least one intermediate step between x(4-x²) = A/x and the printed answer. As a minimum accept x(4-x²) = A/x ⇒ 4x-x³ = A/x ⇒ x⁴-4x² + A = 0
(c) B1: For A > 0 as one boundary. May be seen embedded in their final answer. x > 0 is B0. M1: Attempts b² = 4ac or equivalent e.g. b²-4ac = 0 with a = 1, b = -4 and c = A to obtain a value for A.

Condone use of an inequality rather than "=" to obtain a value or inequality for A e.g. $b^2 - 4ac > 0$ or $b^2 - 4ac < 0$ leading to A > ... or A < ...


- May be implied by e.g. A = 4, A < 4, A > 4 etc.
- A1: Correct range for A. Allow equivalents e.g. "A > 0 and A < 4", "(0, 4)" but not "A > 0 or A < 4", "A > 0, A < 4"

EXAMPLE 1 Correct answer with no working scores 3/3 Partially correct answer with no working e.g. $0 < A \le 4$ can score B1 M1 (implied) A0

9(a) $m = \frac{7-2}{15-4} \left(=\frac{5}{11}\right)$ M1 $y-2 = \frac{5}{11}(x-4) \text{ or } y-7 = \frac{5}{11}(x-15)$ M1 or $y = \frac{5}{11}x+c \Rightarrow 2 = \frac{5}{11} \times 4+c \Rightarrow c = \left(\frac{2}{11}\right)$ M1 (a) ALT (a) ALT $y = mx+c \Rightarrow \frac{2-4m+c}{7-15m+c}$ M1 $\frac{2-4m+c}{7-15m+c} \Rightarrow m = \left(\frac{5}{11}\right), c = \left(\frac{2}{11}\right)$ M1 $\frac{5x-11y+2=0}{5x-11y+2=0}$ A1 (b) (15-x) ² +(7-2) ² = (5\sqrt{5}) ² or e.g. $\sqrt{(15-x)^{2}+(7-2)^{2}} = 5\sqrt{5}$ or e.g. $\sqrt{(15-x)^{2}+(7-2)^{2}} = 5\sqrt{5}$ or e.g. $(5\sqrt{5})^{2} = 5^{2} + CD^{2}$ oe Way 1: $(15-x)^{2}+25=125 \Rightarrow (15-x)^{2}=100 \Rightarrow x =$ or e.g. Way 2: $125=25+CD^{2} \Rightarrow CD^{2}=100 \Rightarrow CD=10 \Rightarrow x =$ (5, 2) or $(25, 2)$ A1	(3)
(a) ALT (a) ALT (a) ALT (b) $ \begin{array}{c} 11 \\ 0r \ y = \frac{5}{11}x + c \Rightarrow 2 = \frac{5}{11} \times 4 + c \Rightarrow c =\left(\frac{2}{11}\right) \\ 5x - 11y + 2 = 0 \\ 11 \\ x = 4m + c \\ 7 = 15m + c \\ 7 = 15m + c \\ x =\left(\frac{5}{11}\right), \ c =\left(\frac{2}{11}\right) \\ 11 \\ x =\left(\frac{2}{11}\right) \\ x = $	(3)
(a) ALT $y = mx + c \Rightarrow \frac{2 = 4m + c}{7 = 15m + c}$ (b) $(15 - x)^{2} + (7 - 2)^{2} = (5\sqrt{5})^{2}$ $\int_{0}^{0} \operatorname{re.g.}_{0} (15 - x)^{2} + (7 - 2)^{2} = 5\sqrt{5}$ or e.g. $(5\sqrt{5})^{2} = 5^{2} + CD^{2} \text{ oe}$ $\frac{4}{C} = 100 \Rightarrow x = \dots$ or e.g. $(5\sqrt{5})^{2} = 5^{2} + CD^{2} \text{ oe}$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$	
$y = mx + c \Rightarrow 7 = 15m + c$ $\frac{2 = 4m + c}{7 = 15m + c} \Rightarrow m = \dots \left(\frac{5}{11}\right), c = \dots \left(\frac{2}{11}\right)$ M1 $\frac{5x - 11y + 2 = 0$ (b) $(15 - x)^2 + (7 - 2)^2 = \left(5\sqrt{5}\right)^2$ or e.g. $\sqrt{(15 - x)^2 + (7 - 2)^2} = 5\sqrt{5}$ or e.g. $(5\sqrt{5})^2 = 5^2 + CD^2 \text{ oe}$ Way 1: $(15 - x)^2 + 25 = 125 \Rightarrow (15 - x)^2 = 100 \Rightarrow x = \dots$ or e.g. $Way 2: 125 = 25 + CD^2 \Rightarrow CD^2 = 100 \Rightarrow CD = 10 \Rightarrow x = \dots$ (5, 2) or $(25, 2)$ A1	
$\frac{2 = 4m + c}{7 = 15m + c} \Rightarrow m = \dots \left(\frac{5}{11}\right), c = \dots \left(\frac{2}{11}\right) \qquad M1$ $5x - 11y + 2 = 0 \qquad A1$ (b) $\frac{(15 - x)^2 + (7 - 2)^2 = (5\sqrt{5})^2}{\sqrt{(15 - x)^2 + (7 - 2)^2} = 5\sqrt{5}} \qquad $	
(b) $(15-x)^2 + (7-2)^2 = (5\sqrt{5})^2$ or e.g. $(5\sqrt{5})^2 = 5^2 + CD^2$ oe Way 1: $(15-x)^2 + 25 = 125 \Rightarrow (15-x)^2 = 100 \Rightarrow x =$ or e.g. $Way 2: 125 = 25 + CD^2 \Rightarrow CD^2 = 100 \Rightarrow CD = 10 \Rightarrow x =$ (5, 2) or $(25, 2)$	
$(13-x)^{2} + (7-2)^{2} = (3\sqrt{3})$ or e.g. $(5\sqrt{5})^{2} = 5^{2} + CD^{2} \text{ oe}$ $M1$ $M1$ $M2 + (15-x)^{2} + (25-x)^{2} = 100 \Rightarrow x =$ or e.g. $M1$ $Way 1: (15-x)^{2} + 25 = 125 \Rightarrow (15-x)^{2} = 100 \Rightarrow x =$ $M1$ $Way 2: 125 = 25 + CD^{2} \Rightarrow CD^{2} = 100 \Rightarrow CD = 10 \Rightarrow x =$ $(5, 2) \text{ or } (25, 2)$ $A1$	
or e.g. Way 2: $125 = 25 + CD^2 \Rightarrow CD^2 = 100 \Rightarrow CD = 10 \Rightarrow x =$ (5, 2) or (25, 2) A1	
(5, 2) or $(25, 2)$ A1	
(5, 2) and $(25, 2)$ A1	
	(4)
(c) Area $=\frac{1}{2}("5"-4) \times 5$ M1	
$=\frac{5}{2}$ A1	
	(2)
Notes:	Fotal 9

M1: Solves 2 equations of the form $\alpha = m\beta + c$ to find values for *m* and *c*.

A1: Correct equation in the required form including the "= 0". Allow any integer multiple of this equation.

Allow other correct methods for the area e.g. using trigonometry.

Their C must be of the form (k, 2) and a correct formula used or implied.

A1: Correct minimum area. Must be 2.5 not awrt 2.5 (e.g. if they use trigonometry and get an inexact answer)

Question	Scheme	Marks
10(a)	$f'(4) = 6(4) - \frac{7 \times 14}{4} = -\frac{1}{2}$	B1
	$\frac{f'(4) = 6(4) - \frac{7 \times 14}{4} = -\frac{1}{2}}{m_T = -\frac{1}{2} \Longrightarrow m_N = \frac{-1}{-\frac{1}{2}}}$	M1
	$y-12 = 2(x-4)$ or $y = mx + c \Rightarrow y = 2x + c \Rightarrow 12 = 2(4) + c \Rightarrow c =$	M1 (A1 on ePen)
	y = 2x + 4	A1
		(4)
(b)	$\frac{(2x-1)(3x+2)}{2\sqrt{x}} = \dots \frac{6x^2 + x - 2}{2\sqrt{x}} = \dots 3x^{\frac{3}{2}} + \frac{1}{2}x^{\frac{1}{2}} - x^{-\frac{1}{2}}$ $f(x) = \frac{6x^2}{2} - \frac{6}{5}x^{\frac{5}{2}} - \frac{1}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}}(+c)$	M1
	2 5 5	
	or e.g. $f(x) = \frac{6x^2}{2} - \frac{3}{\frac{5}{2}}x^{\frac{5}{2}} - \frac{\frac{1}{2}}{\frac{3}{2}}x^{\frac{3}{2}} + \frac{x^{\frac{1}{2}}}{\frac{1}{2}}(+c)$	M1A1A1
	or e.g. $f(x) = \frac{6x^2}{2} - \left(\frac{3}{\frac{5}{2}}x^{\frac{5}{2}} + \frac{\frac{1}{2}}{\frac{3}{2}}x^{\frac{3}{2}} - \frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right)(+c)$	
	$12 = \frac{6(4)^2}{2} - \frac{6}{5}(4)^{\frac{5}{2}} - \frac{1}{3}(4)^{\frac{3}{2}} + 2(4)^{\frac{1}{2}} + c \Longrightarrow c = \dots$	M1
	$(f(x) =)3x^{2} - \frac{6}{5}x^{\frac{5}{2}} - \frac{1}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + \frac{16}{15}$	Al
		(6)
		Total 10

Notes:

(a)

B1: Correct gradient at *P* (may be implied)

M1: Attempts to use the perpendicular gradient rule to find the normal gradient.

Look for e.g.
$$m_N = \frac{-1}{m_T}$$
 or e.g. $m_T \times m_N = -1 \Longrightarrow -\frac{1}{2} m_N = -1 \Longrightarrow m_N = \dots$

May be implied by their normal gradient.

M1(A1 on Epen): Attempts the equation of the normal using a "changed" gradient with x = 4 and y = 12 correctly placed.

Alternatively uses y = mx + c with a "changed" gradient with x = 4 and y = 12 to find a value for *c*.

A1: Correct equation in the required form

(b) Allow work for part (b) seen in part (a) to score in (b) provided it is seen or used in (b)M1: Expands the numerator of the fraction and attempts to split.

Score for one correct index achieved from correct work e.g. $\frac{..x^2}{\sqrt{x}} \rightarrow ...x^{\frac{3}{2}}$ or $\frac{...x}{\sqrt{x}} \rightarrow ...x^{\frac{1}{2}}$ or $\frac{...}{\sqrt{x}} \rightarrow ...x^{-\frac{1}{2}}$

M1: Attempts to integrate a fractional power. E.g. $...x^{\frac{3}{2}} \rightarrow ...x^{\frac{5}{2}}$ or $x^{\frac{1}{2}} \rightarrow ...x^{\frac{3}{2}}$ or $x^{-\frac{1}{2}} \rightarrow ...x^{\frac{1}{2}}$ etc.

Do not allow this mark for an attempt to integrate the \sqrt{x} in the denominator.

A1: Any 2 correct terms simplified or unsimplified.

A1: All correct simplified or unsimplified. The "+ c" is not required here.

M1: Uses x = 4 and y = 12 following an attempt to increase at least one power x by 1 to find a value for their c. Their c may not be fully evaluated but must be a numerical expression.

A1: Correct simplified form. The "f (x) = " is not required just look for the correct expression.

Accept equivalent simplified forms and allow $(f(x) =)3x^2 - \left(\frac{6}{5}x^{\frac{5}{2}} + \frac{1}{3}x^{\frac{3}{2}} - 2x^{\frac{1}{2}}\right) + \frac{16}{15}$

Apply isw if applicable unless they multiply all terms by e.g. 15

Question	Scheme	Marks
11(a)	$x = \frac{5\pi}{2} \text{ or } y = 12$	B1
	$x = \frac{5\pi}{2} \text{ and } y = 12$	B1
		(2)
(b)	$x = \frac{3\pi}{2}$ or $y = -21$	B1
	$x = \frac{3\pi}{2}$ and $y = -21$	B1
		(2)
(c)(i)	(A =) - 12	B1
(ii)	$(A =)-12$ $(B =)\frac{5\pi}{4}$	B1
		(2)
		Total 6
In all	cases, answers written in the body of the script take precedence over answers written	n on the
In all	cases, answers written in the body of the script take precedence over answers written diagram.	n on the
In all		n on the
In all	diagram. Angles and numbers must be written as <u>single</u> terms e.g. not $2\pi + \frac{\pi}{2}$ for $\frac{5\pi}{2}$	n on the
	diagram. Angles and numbers must be written as <u>single</u> terms e.g. not $2\pi + \frac{\pi}{2}$ for $\frac{5\pi}{2}$ Penalise the use of degrees <u>once</u> the first time it occurs	
	diagram. Angles and numbers must be written as <u>single</u> terms e.g. not $2\pi + \frac{\pi}{2}$ for $\frac{5\pi}{2}$	
e.	diagram. Angles and numbers must be written as <u>single</u> terms e.g. not $2\pi + \frac{\pi}{2}$ for $\frac{5\pi}{2}$ Penalise the use of degrees <u>once</u> the first time it occurs g. (a) (450°, 12) (b) (270°, -21) (c) $A = -12$, $B = 225^{\circ}$ scores (a) B1B0 (b) B1B1 (c) B1 The degrees symbol is not required	1B1
e.	diagram. Angles and numbers must be written as <u>single</u> terms e.g. not $2\pi + \frac{\pi}{2}$ for $\frac{5\pi}{2}$ Penalise the use of degrees <u>once</u> the first time it occurs g. (a) (450°, 12) (b) (270°, -21) (c) $A = -12$, $B = 225^{\circ}$ scores (a) B1B0 (b) B1B1 (c) B1	1B1
e. If bo	diagram. Angles and numbers must be written as <u>single</u> terms e.g. not $2\pi + \frac{\pi}{2}$ for $\frac{5\pi}{2}$ Penalise the use of degrees <u>once</u> the first time it occurs g. (a) (450°, 12) (b) (270°, -21) (c) $A = -12$, $B = 225^{\circ}$ scores (a) B1B0 (b) B1B1 (c) B1 The degrees symbol is not required th coordinates in (a) and (b) are correct but the wrong way round score as B1B0 eac	1B1 h time
e. If bo	diagram. Angles and numbers must be written as <u>single</u> terms e.g. not $2\pi + \frac{\pi}{2}$ for $\frac{5\pi}{2}$ Penalise the use of degrees <u>once</u> the first time it occurs g. (a) (450°, 12) (b) (270°, -21) (c) $A = -12$, $B = 225^{\circ}$ scores (a) B1B0 (b) B1B1 (c) B1 The degrees symbol is not required th coordinates in (a) and (b) are correct but the wrong way round score as B1B0 eac e.g. (a) $\left(12, \frac{5\pi}{2}\right)$ (b) $\left(-21, \frac{3\pi}{2}\right)$ scores (a) B1B0 (b) B1B0	1B1 h time
e. If bo	diagram. Angles and numbers must be written as <u>single</u> terms e.g. not $2\pi + \frac{\pi}{2}$ for $\frac{5\pi}{2}$ Penalise the use of degrees <u>once</u> the first time it occurs g. (a) (450°, 12) (b) (270°, -21) (c) $A = -12$, $B = 225°$ scores (a) B1B0 (b) B1B1 (c) B1 The degrees symbol is not required th coordinates in (a) and (b) are correct but the wrong way round score as B1B0 eac e.g. (a) $\left(12, \frac{5\pi}{2}\right)$ (b) $\left(-21, \frac{3\pi}{2}\right)$ scores (a) B1B0 (b) B1B0 brdinates in (a) or (b) are the wrong way round and only one is correct score as B0B0	1B1 h time

(a) **B1:** One coordinate correct.

May be seen as x = ... or y ... or embedded in a coordinate pair e.g. $\left(\frac{5\pi}{2}, 12\right)$ or in a vector $\left(\frac{5\pi}{2}, 12\right)$

B1: Both coordinates correct.

May be seen as x = ... and y ... or as a coordinate pair e.g. $\left(\frac{5\pi}{2}, 12\right)$ or as a vector $\left(\frac{5\pi}{2}, 12\right)$

(b)

B1: One coordinate correct.

May be seen as $x = \dots$ or $y \dots$ or embedded in a coordinate pair e.g. $\left(\frac{3\pi}{2}, -21\right)$ or in a vector $\left(\begin{array}{c} \frac{3\pi}{2} \\ -21 \end{array}\right)$

B1: Both coordinates correct.

May be seen as x = ... and y ... or as a coordinate pair e.g. $\left(\frac{3\pi}{2}, -21\right)$ or as a vector $\left(\frac{3\pi}{2}, -21\right)$

(c)(i)
B1: Correct value for A. The "A =" is not required but it must be clear it is the answer to (i) or is the value of A. (ii)
B1: Correct value for B. The "B =" is not required but it must be clear it is the answer to (ii) or is the value of B.

If candidates write the values as a coordinate pair e.g. $\left(\frac{5\pi}{4}, -12\right)$ or $\left(-12, \frac{5\pi}{4}\right)$ so it is not clear which value is which, score B0B0

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom